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Data Standards in Phenotyping

Data standards in plant phenotyping provide a common framework for describing and exchanging the diverse datasets
generated by imaging, sensor systems, and environmental monitoring. Using established standards such as MIAPPE for - ' . . -
metadata, controlled ontologies, and BrAP! interfaces ensures data consistency, interoperability, and FAIR compliance. controlled access to sensitive or license-protected data. This makes BrAP/ easy to use in cloud, containerised, or

These standards enable reliable integration, comparison, and reuse of phenotyping data across platforms and research hybrid infrastructure environments. Within CZPPN, BrAPI serves as the primary programmatic access point between

teams. local repositories, the transformation layer, and the central data platform. The implementation uses Node.js REST
services that map PostgreSQL schemas to BrAPI resources via middleware. This enables automated data integration

MIAPPE (Minimum Information About a Plant Phenotyping Experiment) is a comprehensive metadata standard with analytical models, FAIR catalogues (PhenoSERVICE, EOSC), and external services, making CZPPN a fully

designed to ensure consistent, structured, and interoperable documentation of plant phenotyping experiments. It interoperable part of the European data infrastructure. See brapi.org.

defines a detailed set of descriptors covering experimental design, plant material, growth conditions, treatments, % FAIR dat sharng

environmental monitoring, measurement protocols, and data processing workflows. MIAPPE provides a harmonized

semantic framework built on controlled vocabularies and ontologies, enabling precise and machine-interpretable Resources for networking

annotation of all experimental components. This significantly enhances reproducibility, cross-study integration, and remete sl

long-term data usability across phenotyping infrastructures. czppN e ot AR,

From a technical perspective, implementing MIAPPE requires establishing a standardized metadata pipeline that — 2 e

captures and validates all mandatory and recommended fields throughout the experiment’s lifecycle. Practically, this -::j_;oueung mvc...iﬁ_j:-::;::f:: :;L"Requ'; L@ czPPN DB ,

includes creating MIAPPE-compliant data templates (e.g., ISA-Tab, ISA-JSON), integrating MIAPPE metadata fields e e

directly into data acquisition software, and enforcing ontology-based picklists for traits, environmental parameters, and N '

protocols. Metadata should be stored in structured formats (CSV, JSON, or relational database tables) and validated

using automated schema-checking tools. Integration with BrAPI endpoints ensures programmatic access to MIAPPE-

compliant datasets, while mapping tools such as the EMPHASIS Data Stewardship Wizard or PhenoMeNal workflows

can assist in generating complete MIAPPE packages. When adopted as part of a centralised data platform, MIAPPE

enables seamless ingestion, cataloguing, and FAIR-compliant dissemination of phenotyping datasets. See miappe.org.

Technically, BrAPI provides robust mechanisms for working with large data sets, including pagination, filtering,
standardised query parameters, and format validation. It integrates security protocols such as OAuth2, enabling

BrAPI-Core

Other teams

FAIR data sharing
process data

Cyber security modul

AttributeValues

BrAPI-Phenotyping

BrAPI High Level Domain Map

Local CZPPN DBs - data sources pheno
platforms (RAW data -e.g. images, ... )

BrAPIl (Breeding API) ) is an open, RESTful web-service specification designed to standardise the )
exchange of plant breeding and phenotyping data across heterogeneous information systems. It @mlappe Data platform is being developed within the emerging CZPPN (Czech Plant Phenotyping
defines a comprehensive set of endpoints that cover key domains, including germplasm, trials, Network) to support unified data management across all facilities. It will enable

studies, environmental parameters, observation units, raw and processed measurements, and high- Q B r ﬁ PI éST) structured processing, integration, and long-term organization of phenotyping datasets.

volume imaging data. BrAPl uses JSON as its primary data format, ensuring both machine readability The platform will also provide standardized data sharing based on MIAPPE metadata and
and compatibility with modern analytical workflows and cloud-native environments. BrAPI interfaces, supporting reuse within CZPPN and by external research team

Al/ML and Computer Vision
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3D computer vision using Plant Scans from Phenospex PlantEye F609_ _’— @ @ Agricultural modelling as a tool to optimize crop prod uction

Soil and background segmentation for PlantEye F600

microplot scans. We published a novel method for 5 » ‘*‘ e Tt O l ﬁ e S
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scene difficulty with a Complexity/Overlap Index (Ol) ,‘ZZ'" : 22;? Eifi ‘/m,‘;z:;i,em e Modelling using crop growth models such as APSIM allows to perform large scale analysis of an agri-system.

that captures geometric/spectral —overlap; Reporting -~ I Due to the in-silico nature of the research, it is possible to explore vast array of possibilities to try to find promising
focuses on AP@loU (0.3/0.5/0.7) plus count AUC oL peoe s e scenarios for future testing in the field. We developed an array of tools (C# programs, python scripts etc.) to help
fmeans ol 67 OO 0%62 : ; automate this process by deploying batch processing and parallel data processing.

metrics(ARMSE/AMAE/ARSQ) for stability across [—== e B ot
thresholds. In practice, Ol-guided folds yield more

coherent behavior across metrics, while individual

random splits behave differently.

When dealing with millions of simulations, large amount of data is generated (~TB). Also, during the analysis,
additional statistical parameters are calculated and added to the data. In the last step, we calculate 10G ("Index
of Goodness") in an effort to capture the performance of a given simulation by a single number. This requires

pevelopment of novel augmentation methods. e tune 4 o ¢ complex mathematical modelling and further increase in the size of data. ’
methods by complexity: geometric (rot/scale/jitter), -

spectral (intensity/illumination), occlusion/drop Due to different p.aramet.ers .being changed in this exploratory research, it is useful to keep dhfferent version (?f
(simulated leaf overlap), and noise. Combining Ol-guided the datasets available (in different stages of processing). Therefore, the need for large capacity storage that is
splits with targeted augmentation delivers more stable ” ) oo 600 capable of maintaining the data while allowing easy access and the ability to re-upload the semi-processed

detection and better out-of-domain performance than data back into it.
baseline practices.

Cost-effective image time-series emergence detection — e -l i s Sorghum as drought resistant alternative to maize in the Czech Republic

We develop an open pipeline for automated scoring of

seedling emergence from RGB time-series trays. Full trays are S R HERSEE: s o) We are currently working with sorghum to analyze its potential in
segmented into wells (Mask R-CNN R-50-FPN), sequences are 1) segmentation model 2) object detection the C.zech Republic. The modelling .allows us tf) flnd prom|.smg
cropped around each plant using YOLOv8n (= 75x75 patches), = ‘ , . g nﬁ combinations of management practices to optimize the yield.

features are extracted with EfficientNetV2-B0O and classified I R But more than the yield itself, the main advantage of sorghum over

over time via TCN/LSTM. Two independent experiments i >3 maize is lesser need for fertilization and higher resistance to
75x75

(Raspberry Pi array vs. PSI RGB system) demonstrate robust ; B , . stress induced by droughts.

transfer. Raw per-frame accuracies reach ~0.966-0.984 and ' | ' ' The modelling also provides information on areas where breeders
improve after post-processing and £2 h tolerance; outputs are , can improve the sorghum crop to be better suited for a Czech
cumulative emergence curves and per-plant timestamps; code “box” climate (temperate - continental, type D). The results show that one
and data organization are provided. 7 |t of the main areas of interest will be acclimatization for cold, since

ey the parameter for cardinal temperature (minimum) has high impact
3) time series | emerged onyield and biomass production.

We provide open-source code with reproducible configs and

documented baselines. The pipeline is modular—tray/well
segmentation (Al model), data reduction (object detection + .... ..-- Another promising results come in the form of production stability

algorithm), image classification model, temporal head, and i i i with regards to low nitrogen inputs. That would mean savings for

post-processing are plug-replaceable. Users can retrain on farmers in terms of fertilization costs.

their own data using ready-made code and training

instructions. (available soon at GitHub: https://github.com/kit-
ion)
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