

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization

Vladimir Petrik IMPACT, CIIRC, CTU

May 22, 2025

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work
- VLMs (Vision-Language Models) are also very powerful

openai.com/gpt-4

SELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 2 / 41

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work
- VLMs (Vision-Language Models) are also very powerful
- But the world is not just text or vision
 - Robot proprioception

openai.com/gpt-4

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work
- VLMs (Vision-Language Models) are also very powerful
- But the world is not just text or vision
 - Robot proprioception
 - RGBD cameras

openai.com/gpt-4

BELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 2 / 41

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work

- But the world is not just text or vision
 - Robot proprioception
 - RGBD cameras
 - Radar

openai.com/gpt-4

8 ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik

- LLMs shows remarkable performance
 - Generate human-like text
 - Translate languages
 - Write code
 - In depth analysis of related work

- VLMs (Vision-Language Models) are also very powerful
- But the world is not just text or vision
 - Robot proprioception
 - RGBD cameras
 - Radar
 - ELLIOT will develop the next generation of open Multimodal Generalist Foundation Models

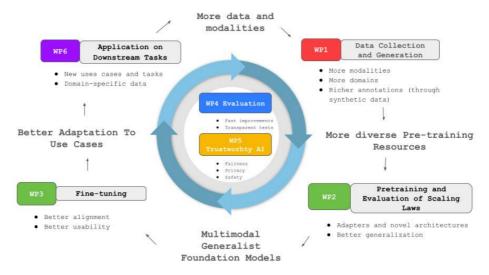
openai.com/gpt-4

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik

- ELLIOT is a project funded by the European Commission
- Call: Advancing Large AI Models: Integration of New Data Modalities and Expansion of Capabilities (RIA)
- Consortium: 32 partners across Europe
- Duration: 4 years (2025-2029)
- Budget: EUR 28.5M

ELLIOT's objectives

- Strong, robust generalization
 - Key desirable property of foundation models
 - Robustness to distribution shifts
 - Generalization to unseen data and learning from them



ELLIOT's objectives

- Strong, robust generalization
 - Key desirable property of foundation models
 - Robustness to distribution shifts
 - Generalization to unseen data and learning from them
- Multimodality support
 - various input as well as output modalities
 - text, images, audio, video, 3D point clouds, proprioception
 - long sequences of multimodal data (temporal modality)
 - spatio-temporal audio-video data
 - watching educational videos
 - monitoring environmental changes

How to achieve it?

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 5 / 41

ELLIOT's success relies on high-quality, diverse, and compliant data.

- ELLIOT's success relies on high-quality, diverse, and compliant data.
- Objectives of WP1:
 - Build a clean common crawl database
 - link to source data
 - licensing and regulatory content
 - transparency
 - methods for aligning data with AI/Data regulations

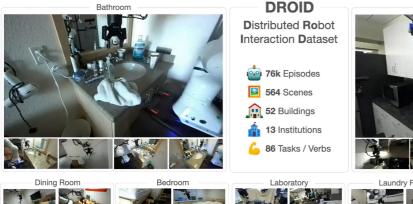
- ELLIOT's success relies on high-quality, diverse, and compliant data.
- Objectives of WP1:
 - Build a clean common crawl database
 - link to source data
 - licensing and regulatory content
 - transparency
 - methods for aligning data with AI/Data regulations
 - Framework for synthetic data generation at scale
 - physics-based simulations
 - generative models
 - multimodality and cross modal alignment

- ELLIOT's success relies on high-quality, diverse, and compliant data.
- Objectives of WP1:
 - Build a clean common crawl database
 - link to source data
 - licensing and regulatory content
 - transparency
 - methods for aligning data with AI/Data regulations
 - Framework for synthetic data generation at scale
 - physics-based simulations
 - generative models
 - multimodality and cross modal alignment
 - Proprietary data
 - domain-specific data

Data for most advanced robotics demos?

Aloha, Mobile Aloha (RSS23, CoRL24)

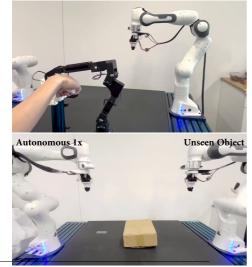
ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 7 / 41


Droid Setup

- Panda robot
- Robotiq gripper
- 3 Zed cameras
- Teleoperation by VR

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 8 / 41

Droid data



Kitchen

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 9 / 41

Force-feedback dual-arm teleoperation

FACTR, arXiv, 2025

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 10 / 41

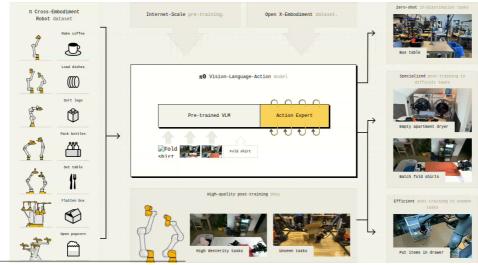
DexWild

DexWild, arXiv, 2025

- Dataset composition and preprocessing
 - pipeline to create generic multimodal datasets
 - sufficiently large and diverse

- Dataset composition and preprocessing
 - pipeline to create generic multimodal datasets
 - sufficiently large and diverse
- Distributed training
 - develops a distributed training framework
 - various scale training including thousands of GPUs (for >34B parameters)

- Dataset composition and preprocessing
 - pipeline to create generic multimodal datasets
 - sufficiently large and diverse
- Distributed training
 - develops a distributed training framework
 - various scale training including thousands of GPUs (for >34B parameters)
- Pre-training procedure exploration
 - dataset mixtures
 - model architecture
 - loss mixture
 - validation via scaling laws



- Dataset composition and preprocessing
 - pipeline to create generic multimodal datasets
 - sufficiently large and diverse
- Distributed training
 - develops a distributed training framework
 - various scale training including thousands of GPUs (for >34B parameters)
- Pre-training procedure exploration
 - dataset mixtures
 - model architecture
 - loss mixture
 - validation via scaling laws
- Evaluation and monitoring

- Dataset composition and preprocessing
 - pipeline to create generic multimodal datasets
 - sufficiently large and diverse
- Distributed training
 - develops a distributed training framework
 - various scale training including thousands of GPUs (for >34B parameters)
- Pre-training procedure exploration
 - dataset mixtures
 - model architecture
 - loss mixture
 - validation via scaling laws
- Evaluation and monitoring
- Foundation model training
 - large scale training of multiple foundation models
 - models for various regulations
 - multiple weeks on thousands of GPUs

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization 12 / 41

$\pi 0$ Vision Language Action model

Physical Intelligence

$\pi 0$ results

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik

- Human-aligned fine-tuning
 - European values and human goals
 - reinforcement learning from human feedback
 - preference optimization
 - trustworthy without hallucinations

- Human-aligned fine-tuning
 - European values and human goals
 - reinforcement learning from human feedback
 - preference optimization
 - trustworthy without hallucinations
- Grounded fine-tuning
 - inserting modalities
 - space, time, causal, depth, object-3D-awareness

- Human-aligned fine-tuning
 - European values and human goals
 - reinforcement learning from human feedback
 - preference optimization
 - trustworthy without hallucinations
- Grounded fine-tuning
 - inserting modalities
 - space, time, causal, depth, object-3D-awareness
- Test-time fine-tuning
 - test-time adaptation
 - handle unseen distribution shifts

- Human-aligned fine-tuning
 - European values and human goals
 - reinforcement learning from human feedback
 - preference optimization
 - trustworthy without hallucinations
- Grounded fine-tuning
 - inserting modalities
 - space, time, causal, depth, object-3D-awareness
- Test-time fine-tuning
 - test-time adaptation
 - handle unseen distribution shifts
- Fine-tuning to combine multiple modalities
 - joint fine-tuning to align multiple models

- Human-aligned fine-tuning
 - European values and human goals
 - reinforcement learning from human feedback
 - preference optimization
 - trustworthy without hallucinations
- Grounded fine-tuning
 - inserting modalities
 - space, time, causal, depth, object-3D-awareness
- Test-time fine-tuning
 - test-time adaptation
 - handle unseen distribution shifts
- Fine-tuning to combine multiple modalities
 - joint fine-tuning to align multiple models
- Efficiency fine-tuning
 - distillation
 - pruning
 - architecture search

Robotics has specific modalities

- Measured quantities
 - joint angle measurements
 - force-torque measurements
 - multiview RGBD cameras

Tell and show, arXiv, 2024

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 16 / 41

Robotics has specific modalities

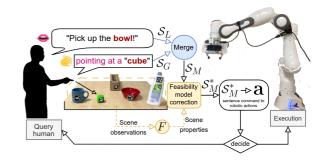
Measured quantities

- joint angle measurements
- force-torque measurements
- multiview RGBD cameras
- Different actuation modes
 - continuous / discrete
 - torque / position / impedance control

Tell and show, arXiv, 2024

SELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 16 / 41

Robotics has specific modalities


Measured quantities

- joint angle measurements
- force-torque measurements
- multiview RGBD cameras
- Different actuation modes
 - continuous / discrete
 - torque / position / impedance control
- Human in the loop
 - feedback from human
 - life-long learning
 - catastrophic forgetting

Tell and show, arXiv, 2024

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization 16 / 41

Testing and Evaluation

Evaluation platform

- develop open-source platform for evaluation
- orchestration tooling, HPC integration, monitoring
- automated evaluation via FM judges

Testing and Evaluation

Evaluation platform

- develop open-source platform for evaluation
- orchestration tooling, HPC integration, monitoring
- automated evaluation via FM judges
- Evaluation for new data modalities
 - new benchmark datasets
 - ability to reason about new data modalities

Testing and Evaluation

- Evaluation platform
 - develop open-source platform for evaluation
 - orchestration tooling, HPC integration, monitoring
 - automated evaluation via FM judges
- Evaluation for new data modalities
 - new benchmark datasets
 - ability to reason about new data modalities
- Evaluation for new AI capabilities
 - robot perception and autonomous driving
 - simulated and real-world benchmarks
 - generalization to unseen objects, tasks, and environments

Testing and Evaluation

- Evaluation platform
 - develop open-source platform for evaluation
 - orchestration tooling, HPC integration, monitoring
 - automated evaluation via FM judges
- Evaluation for new data modalities
 - new benchmark datasets
 - ability to reason about new data modalities
- Evaluation for new AI capabilities
 - robot perception and autonomous driving
 - simulated and real-world benchmarks
 - generalization to unseen objects, tasks, and environments
- Evaluation for AI safety
 - robustness against attacks
 - privacy issues
 - ethical and regulatory standards

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 17 / 41

Real-world evaluation is expensive

- Real-world evaluation is expensive
- Simulated evaluation has sim2real gap

- Real-world evaluation is expensive
- Simulated evaluation has sim2real gap
- We are developing a new evaluation platform
 - analyze the sim2real correlation
 - control gap
 - perception gap


- Real-world evaluation is expensive
- Simulated evaluation has sim2real gap
- We are developing a new evaluation platform
 - analyze the sim2real correlation
 - control gap
 - perception gap
 - evaluate the performance of foundation models / finetuned models

- Real-world evaluation is expensive
- Simulated evaluation has sim2real gap
- We are developing a new evaluation platform
 - analyze the sim2real correlation
 - control gap
 - perception gap
 - evaluate the performance of foundation models / finetuned models
 - evaluate generalization capabilities
 - novel poses of known objects
 - novel objects
 - novel tasks

Simulated benchmark

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik

WP6: Use Case Driven Model Transfer and Deployment

Application Domains		Use Case Owners		Data / Modalities
		Industry / Government	Academic	
6.0	Media Use Case 1.1: New media production Use Case 1.2: Live fact-checking	vrt 🏨	CERTH March Massacher O LINVUESITÀ DI TRENTO	Audio / Speech Video
J.	Earth Modelling Use Case 2.1: Earth observation Use Case 2.2: Climate modelling	deimos		Multispectral Hyperspectral Thermal ERA5 CMIP6
C Mar	Robot Perception Use Case 3.1: Robotic surface treatment	ROBOTWIN	Martin 😌 UNVERSITÀ	RGBD Motion Proprioception Language
	Mobility Use Case 4.1: Autonomous driving Use Case 4.2: Infrastructure monitoring	Valeo III Generalitat de Catalunya	CC 9 O UNIVERSITÀ	RGBD Lidar RADAR GPS
	Computer Engineering Use Case 5.1: Code generation Use Case 5.2: Hardware design	«ĝpen chip	Constraints a susception	Source Code Formal Languages
@}	Workflow Automation Use Case 6.1: Document understanding Use Case 6.2: Understanding tabular datasets	<u>yooz ⊚</u>		Language Vision Tabular data Layout

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization المنتقر Vladimir Petrik

RoboTwin

RoboTwin

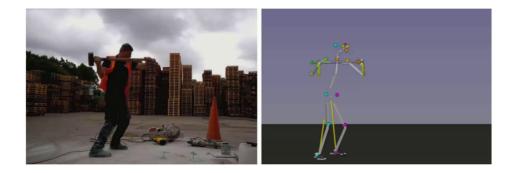
Compute

Training requires large scale compute resources

- European HPC infrastructure involved in the consortium
 - BSC (4500 GPUs)
 - CINECA hosts HPC Leonardo (14000 GPUs)
 - CSC hosts LUMI (12000 GPUs)
 - FZJ (4000 GPUs)
 - Swiss AI initiative (10000 GPUs)
- 2M Eur allocated for compute resources and data collections

Our path toward ELLIOT's objectives

- Data collection for robotics is costly
- Simulation is not variable enough
- How we can use data from the internet?



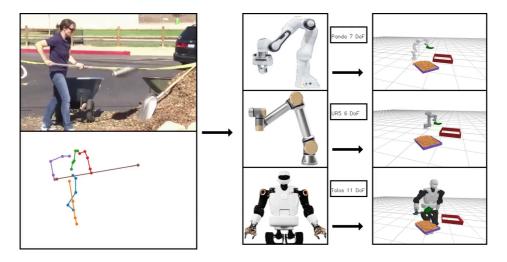
Our path toward ELLIOT's objectives

- Data collection for robotics is costly
- Simulation is not variable enough
- How we can use data from the internet?
- YouTube instructional videos

Extracting human and tool motion from video - IJCV 2022

Learning tool manipulation - RAL 2022

Learning to Use Tools by Watching Videos


Input: instructional video from YouTube

Output: tool manipulation skill transferred to a robot

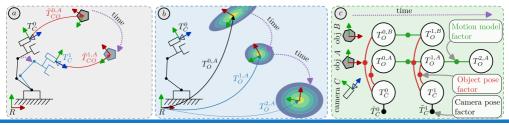
Learning tool manipulation - RAL 2022

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 27 / 41

TAMP guided by video - ICRA 2023

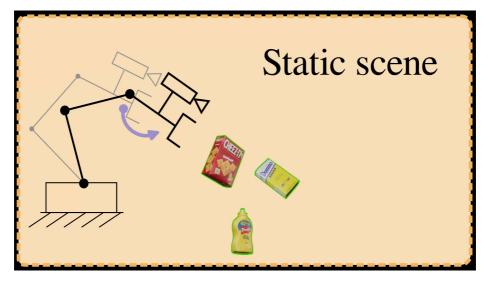
Multi-Contact Task and Motion Planning Guided by Video Demonstration

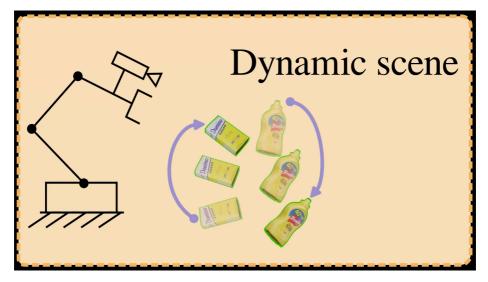
Kateryna Zorina ♣ David Kovar ♣ Florent Lamiraux ◊ Nicolas Mansard ◊ Justin Carpentier ♥ Josef Sivic ♣ Vladimir Petrik ♣


CIIRC, Czech Technical University in Prague
LAAS-CNRS, Universite de Toulouse, CNRS, Toulouse
INRIA, Paris

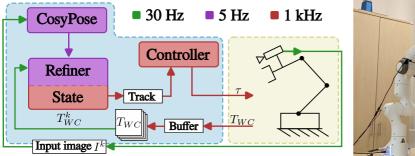
ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 28 / 41

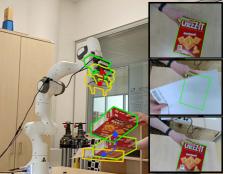
Temporal consistency for object pose estimation - RAL 2025


- Object pose estimation unstable under occlusions
- We need to ensure temporal consistency for control
- Using smoothing and mapping for temporal consistency

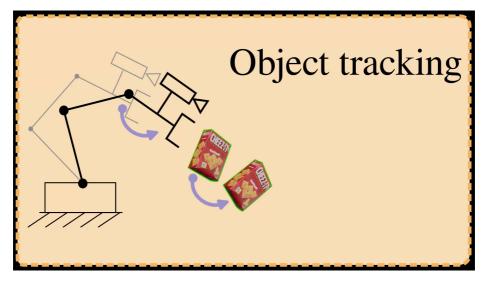

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 29 / 41

Temporal consistency results

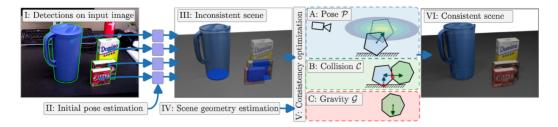

Temporal consistency results



Temporal consistency for robot tracking

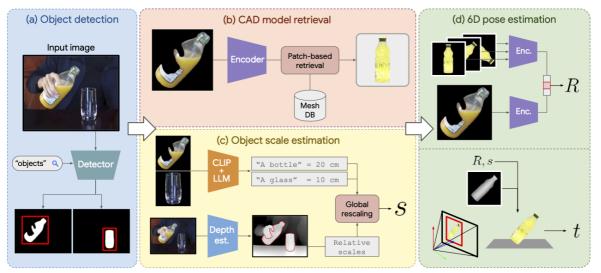

Combine tracking with robot control

Temporal consistency results

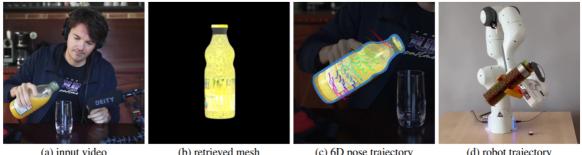


PhysPose - Physical consistency

- Differentiable collision distance
- Estimated support table from two views
 - Dust3r/Mast3r multi-view depth (CVPR 2024)
 - Rescaled based on the reference objects sizes

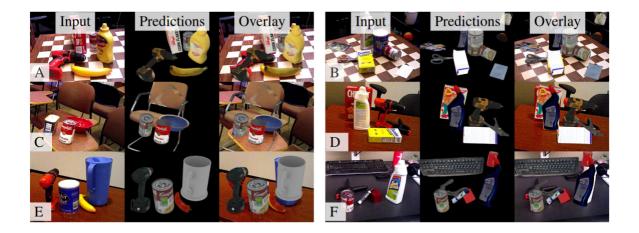

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 34 / 41 Physical consistency visualization

Supplementary Material for PhyPose: Refining 6D Object Poses with Physical Constraints


Paper ID 14085

FreePose - ICLR 2025

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 36 / 41


(a) input video

(b) retrieved mesh

(c) 6D pose trajectory

(d) robot trajectory

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 37 / 41

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 38 / 41

ELLIOT: European Large Open Multimodal Foundation Models for Scalable, Robust Generalization Vladimir Petrik 39 / 41

6D Object Pose Tracking in Internet Videos for Robotic Manipulation

Anonymous authors

Supplementary video for submission #8215 ICLR 2025

Thank you for your attention.